Extensions 1→N→G→Q→1 with N=C3 and Q=C22.45C24

Direct product G=NxQ with N=C3 and Q=C22.45C24
dρLabelID
C3xC22.45C2448C3xC2^2.45C2^4192,1440

Semidirect products G=N:Q with N=C3 and Q=C22.45C24
extensionφ:Q→Aut NdρLabelID
C3:1(C22.45C24) = C24.42D6φ: C22.45C24/C2xC22:C4C2 ⊆ Aut C348C3:1(C2^2.45C2^4)192,1054
C3:2(C22.45C24) = C42:12D6φ: C22.45C24/C42:C2C2 ⊆ Aut C348C3:2(C2^2.45C2^4)192,1086
C3:3(C22.45C24) = C42:18D6φ: C22.45C24/C4xD4C2 ⊆ Aut C348C3:3(C2^2.45C2^4)192,1115
C3:4(C22.45C24) = C24.43D6φ: C22.45C24/C22wrC2C2 ⊆ Aut C348C3:4(C2^2.45C2^4)192,1146
C3:5(C22.45C24) = C6.532+ 1+4φ: C22.45C24/C22:Q8C2 ⊆ Aut C348C3:5(C2^2.45C2^4)192,1196
C3:6(C22.45C24) = C6.1222+ 1+4φ: C22.45C24/C22.D4C2 ⊆ Aut C348C3:6(C2^2.45C2^4)192,1217
C3:7(C22.45C24) = C6.622+ 1+4φ: C22.45C24/C22.D4C2 ⊆ Aut C348C3:7(C2^2.45C2^4)192,1218
C3:8(C22.45C24) = C42:23D6φ: C22.45C24/C4.4D4C2 ⊆ Aut C348C3:8(C2^2.45C2^4)192,1238
C3:9(C22.45C24) = C42:26D6φ: C22.45C24/C42:2C2C2 ⊆ Aut C348C3:9(C2^2.45C2^4)192,1264


׿
x
:
Z
F
o
wr
Q
<